Saturday 14 October 2017

Moving Average Eingebettet


Wie andere schon erwähnt haben, sollten Sie einen IIR (Endlosimpulsantwort) - Filter anstelle des FIR (Finite Impulse Response) Filter, den Sie jetzt verwenden. Es gibt mehr dazu, aber auf den ersten Blick werden FIR-Filter als explizite Windungen und IIR-Filter mit Gleichungen implementiert. Das besondere IIR-Filter, das ich viel in Mikrocontrollern verwende, ist ein einpoliges Tiefpaßfilter. Dies ist das digitale Äquivalent eines einfachen R-C-Analogfilters. Für die meisten Anwendungen haben diese bessere Eigenschaften als der Kastenfilter, den Sie verwenden. Die meisten Verwendungen eines Box-Filter, die ich begegnet bin, sind ein Ergebnis von jemand nicht Aufmerksamkeit in der digitalen Signalverarbeitung Klasse, nicht als Ergebnis der Notwendigkeit ihrer besonderen Eigenschaften. Wenn Sie nur wollen, um hohe Frequenzen zu dämpfen, dass Sie wissen, Rauschen sind, ist ein einpoliges Tiefpassfilter besser. Der beste Weg, um ein digitales in einem Mikrocontroller zu implementieren, ist in der Regel: FILT lt - FILT FF (NEW - FILT) FILT ist ein Stück persistenten Zustand. Dies ist die einzige persistente Variable, die Sie benötigen, um diesen Filter zu berechnen. NEU ist der neue Wert, den der Filter mit dieser Iteration aktualisiert. FF ist die Filterfraktion. Die die Schwere des Filters einstellt. Betrachten Sie diesen Algorithmus und sehen Sie, dass für FF 0 der Filter unendlich schwer ist, da sich der Ausgang nie ändert. Für FF 1 ist das eigentlich gar kein Filter, da der Ausgang nur dem Eingang folgt. Nützliche Werte sind dazwischen. Auf kleinen Systemen wählen Sie FF auf 12 N, so dass die Multiplikation mit FF als Rechtsverschiebung um N Bits erreicht werden kann. Beispielsweise könnte FF 116 sein und das Multiplizieren mit FF daher eine Rechtsverschiebung von 4 Bits. Andernfalls benötigt dieses Filter nur eine Subtraktion und eine Addition, obwohl die Zahlen in der Regel größer als der Eingangswert sein müssen (mehr über die numerische Genauigkeit in einem separaten Abschnitt weiter unten). Ich nehme in der Regel AD-Messwerte deutlich schneller als sie benötigt werden und wenden Sie zwei dieser Filter kaskadiert. Dies ist das digitale Äquivalent von zwei R-C-Filtern in Serie und dämpft um 12 dBoktave über der Rolloff-Frequenz. Allerdings für AD-Lesungen seine in der Regel mehr relevant, um das Filter im Zeitbereich zu betrachten, indem man seine Schrittantwort. Dies zeigt Ihnen, wie schnell Ihr System eine Änderung sehen wird, wenn die Sache, die Sie messen, ändert. Zur Erleichterung der Gestaltung dieser Filter (was nur bedeutet Kommissionierung FF und entscheiden, wie viele von ihnen zu kaskadieren), benutze ich mein Programm FILTBITS. Sie legen die Anzahl der Schaltbits für jede FF in der kaskadierten Filterreihe fest und berechnen die Schrittantwort und andere Werte. Eigentlich habe ich in der Regel laufen diese über mein Wrapper-Skript PLOTFILT. Dies führt FILTBITS, die eine CSV-Datei macht, dann die CSV-Datei. Beispielsweise ist hier das Ergebnis von PLOTFILT 4 4: Die beiden Parameter zu PLOTFILT bedeuten, dass es zwei Filter gibt, die von dem oben beschriebenen Typ kaskadiert sind. Die Werte von 4 geben die Anzahl der Schaltbits an, um die Multiplikation mit FF zu realisieren. Die beiden FF-Werte sind daher in diesem Fall 116. Die rote Spur ist die Einheit Schritt Antwort, und ist die Hauptsache zu betrachten. Dies bedeutet beispielsweise, dass sich der Ausgang des kombinierten Filters auf 90 des neuen Wertes in 60 Iterationen niederschlägt, falls sich der Eingang sofort ändert. Wenn Sie ca. 95 Einschwingzeit kümmern, dann müssen Sie ca. 73 Iterationen warten, und für 50 Einschwingzeit nur 26 Iterationen. Die grüne Kurve zeigt Ihnen den Ausgang einer einzelnen Amplitude. Dies gibt Ihnen eine Vorstellung von der zufälligen Rauschunterdrückung. Es sieht aus wie keine einzelne Probe wird mehr als eine 2,5 Änderung in der Ausgabe verursachen. Die blaue Spur soll ein subjektives Gefühl geben, was dieser Filter mit weißem Rauschen macht. Dies ist kein strenger Test, da es keine Garantie gibt, was genau der Inhalt der Zufallszahlen war, die als der weiße Rauscheneingang für diesen Durchlauf von PLOTFILT ausgewählt wurden. Seine nur, um Ihnen ein grobes Gefühl, wie viel es gequetscht werden und wie glatt es ist. PLOTFILT, vielleicht FILTBITS, und viele andere nützliche Dinge, vor allem für PIC-Firmware-Entwicklung ist verfügbar in der PIC Development Tools-Software-Release auf meiner Software-Downloads-Seite. Hinzugefügt über numerische Genauigkeit Ich sehe aus den Kommentaren und nun eine neue Antwort, dass es Interesse an der Diskussion der Anzahl der Bits benötigt, um diesen Filter zu implementieren. Beachten Sie, dass das Multiplizieren mit FF Log 2 (FF) neue Bits unterhalb des Binärpunkts erzeugt. Auf kleinen Systemen wird FF gewöhnlich mit 12 N gewählt, so daß diese Multiplikation tatsächlich durch eine Rechtsverschiebung von N Bits realisiert wird. FILT ist daher meist eine feste Ganzzahl. Beachten Sie, dass dies ändert keine der Mathematik aus der Prozessoren Sicht. Wenn Sie z. B. 10-Bit-AD-Lesungen und N 4 (FF 116) filtern, benötigen Sie 4 Fraktionsbits unter den 10-Bit-Integer-AD-Messwerten. Einer der meisten Prozessoren, youd tun 16-Bit-Integer-Operationen aufgrund der 10-Bit-AD-Lesungen. In diesem Fall können Sie immer noch genau die gleichen 16-Bit-Integer-Opertions, aber beginnen mit der AD-Lesungen um 4 Bits verschoben verschoben. Der Prozessor kennt den Unterschied nicht und muss nicht. Das Durchführen der Mathematik auf ganzen 16-Bit-Ganzzahlen funktioniert, ob Sie sie als 12,4 feste oder wahre 16-Bit-Ganzzahlen (16,0 Fixpunkt) betrachten. Im Allgemeinen müssen Sie jedem Filterpole N Bits hinzufügen, wenn Sie aufgrund der numerischen Darstellung kein Rauschen hinzufügen möchten. Im obigen Beispiel müsste das zweite Filter von zwei 1044 18 Bits haben, um keine Informationen zu verlieren. In der Praxis auf einer 8-Bit-Maschine bedeutet, dass youd 24-Bit-Werte verwenden. Technisch nur den zweiten Pol von zwei würde den größeren Wert benötigen, aber für Firmware Einfachheit ich in der Regel die gleiche Darstellung, und damit der gleiche Code, für alle Pole eines Filters. Normalerweise schreibe ich eine Unterroutine oder Makro, um eine Filterpol-Operation durchzuführen, dann gelten, dass für jeden Pol. Ob eine Unterroutine oder ein Makro davon abhängt, ob Zyklen oder Programmspeicher in diesem Projekt wichtiger sind. So oder so, ich benutze einige Scratch-Zustand, um NEU in die subroutinemacro, die FILT Updates, sondern auch lädt, dass in den gleichen Kratzer NEU war in. Dies macht es einfach, mehrere Pole anzuwenden, da die aktualisierte FILT von einem Pole ist die NEUE Der nächsten. Wenn ein Unterprogramm, ist es sinnvoll, einen Zeiger auf FILT auf dem Weg in, die auf nur nach FILT auf dem Weg nach draußen aktualisiert wird. Auf diese Weise arbeitet das Unterprogramm automatisch auf aufeinanderfolgenden Filtern im Speicher, wenn es mehrmals aufgerufen wird. Mit einem Makro benötigen Sie nicht einen Zeiger, da Sie in der Adresse passieren, um auf jeder Iteration zu arbeiten. Code-Beispiele Hier ein Beispiel für ein Makro wie oben für eine PIC 18 beschrieben: Und hier ist ein ähnliches Makro für eine PIC 24 oder dsPIC 30 oder 33: Beide Beispiele werden als Makros unter Verwendung meines PIC-Assembler-Präprozessors implementiert. Die mehr fähig ist als eine der eingebauten Makroanlagen. Clabacchio: Ein weiteres Thema, das ich erwähnen sollte, ist die Firmware-Implementierung. Sie können eine einpolige Tiefpassfilter-Subroutine einmal schreiben und dann mehrmals anwenden. Tatsächlich schreibe ich normalerweise solch eine Unterroutine, um einen Zeiger im Gedächtnis in den Filterzustand zu nehmen, dann ihn den Zeiger voranbringen lassen, so daß er nacheinander leicht aufgerufen werden kann, um mehrpolige Filter zu verwirklichen. Ndash Olin Lathrop Apr 20 12 at 15:03 1. Dank sehr viel für Ihre Antworten - alle von ihnen. Ich beschloss, dieses IIR-Filter zu verwenden, aber dieser Filter wird nicht als Standard-Tiefpaßfilter verwendet, da ich die Zählerwerte berechnen und sie vergleichen muss, um Änderungen in einem bestimmten Bereich zu erkennen. Da diese Werte von sehr unterschiedlichen Dimensionen abhängig von Hardware Ich wollte einen Durchschnitt nehmen, um in der Lage sein, auf diese Hardware spezifischen Änderungen automatisch reagieren. Wenn Sie mit der Beschränkung einer Macht von zwei Anzahl von Elementen zu durchschnittlich leben können (dh 2,4,8,16,32 etc), dann kann die Teilung einfach und effizient auf einem getan werden Low-Performance-Mikro ohne dedizierte Division, weil es als Bit-Shift durchgeführt werden kann. Jede Schicht rechts ist eine Macht von zwei zB: Der OP dachte, er hatte zwei Probleme, die Teilung in einem PIC16 und Speicher für seinen Ringpuffer. Diese Antwort zeigt, dass die Teilung nicht schwierig ist. Zwar adressiert es nicht das Gedächtnisproblem, aber das SE-System erlaubt Teilantworten, und Benutzer können etwas von jeder Antwort für selbst nehmen oder sogar redigieren und kombinieren andere39s Antworten. Da einige der anderen Antworten eine Divisionsoperation erfordern, sind sie ähnlich unvollständig, da sie nicht zeigen, wie dies auf einem PIC16 effizient erreicht werden kann. Ndash Martin Apr 20 12 at 13:01 Es gibt eine Antwort für einen echten gleitenden Durchschnitt Filter (auch bekannt als Boxcar-Filter) mit weniger Speicher Anforderungen, wenn Sie dont mind Downsampling. Es heißt ein kaskadiertes Integrator-Kamm-Filter (CIC). Die Idee ist, dass Sie einen Integrator, die Sie nehmen Differenzen über einen Zeitraum, und die wichtigsten Speicher-sparende Gerät ist, dass durch Downsampling, müssen Sie nicht jeden Wert des Integrators zu speichern. Es kann mit dem folgenden Pseudocode implementiert werden: Ihre effektive gleitende durchschnittliche Länge ist decimationFactorstatesize, aber Sie müssen nur um Stateize Proben zu halten. Offensichtlich können Sie bessere Leistung erzielen, wenn Ihr stateize und decimationFactor Potenzen von 2 sind, so dass die Divisions - und Restoperatoren durch Shifts und Masken ersetzt werden. Postscript: Ich stimme mit Olin, dass Sie immer sollten einfache IIR-Filter vor einem gleitenden durchschnittlichen Filter. Wenn Sie die Frequenz-Nullen eines Boxcar-Filters nicht benötigen, wird ein 1-poliger oder 2-poliger Tiefpassfilter wahrscheinlich gut funktionieren. Auf der anderen Seite, wenn Sie für die Zwecke der Dezimierung filtern (mit einer hohen Sample-Rate-Eingang und Mittelung es für die Verwendung durch einen Low-Rate-Prozess), dann kann ein CIC-Filter genau das, was Sie suchen. (Vor allem, wenn Sie stateize1 verwenden und den Ringbuffer insgesamt mit nur einem einzigen vorherigen Integrator-Wert zu vermeiden) Theres einige eingehende Analyse der Mathematik hinter dem ersten Auftrag IIR-Filter, Olin Lathrop bereits beschrieben hat auf der Digital Signal Processing Stack-Austausch (Enthält viele schöne Bilder.) Die Gleichung für diese IIR-Filter ist: Dies kann mit nur Ganzzahlen und keine Division mit dem folgenden Code implementiert werden (möglicherweise benötigen einige Debugging, wie ich aus dem Speicher wurde.) Dieser Filter approximiert einen gleitenden Durchschnitt von Die letzten K Proben durch Setzen des Wertes von alpha auf 1K. Führen Sie dies im vorherigen Code durch die Definition von BITS auf LOG2 (K), dh für K 16 gesetzt BITS auf 4, für K 4 gesetzt BITS auf 2, etc. (Ill Überprüfung der Code hier aufgelistet, sobald ich eine Änderung und Bearbeiten Sie diese Antwort, wenn nötig.) Antwort # 1 am: Juni 23, 2010, um 4:04 Uhr Heres ein einpoliges Tiefpassfilter (gleitender Durchschnitt, mit Cutoff-Frequenz CutoffFrequency). Sehr einfach, sehr schnell, funktioniert super, und fast kein Speicher Overhead. Hinweis: Alle Variablen haben einen Bereich über die Filterfunktion hinaus, mit Ausnahme des übergebenen newInput Hinweis: Dies ist ein einstufiger Filter. Mehrere Stufen können zusammen kaskadiert werden, um die Schärfe des Filters zu erhöhen. Wenn Sie mehr als eine Stufe verwenden, müssen Sie DecayFactor anpassen (was die Cutoff-Frequenz betrifft), um sie zu kompensieren. Und natürlich alles, was Sie brauchen, ist die beiden Zeilen überall platziert, brauchen sie nicht ihre eigene Funktion. Dieser Filter hat eine Rampenzeit, bevor der gleitende Durchschnitt diejenige des Eingangssignals darstellt. Wenn Sie diese Rampenzeit umgehen müssen, können Sie MovingAverage einfach auf den ersten Wert von newInput anstelle von 0 initialisieren und hoffen, dass der erste newInput kein Ausreißer ist. (CutoffFrequencySampleRate) einen Bereich zwischen 0 und 0,5 hat. DecayFactor ist ein Wert zwischen 0 und 1, in der Regel in der Nähe von 1. Single-precision Schwimmer sind gut genug für die meisten Dinge, ich bevorzuge nur Doppel. Wenn Sie mit ganzen Zahlen zu bleiben müssen, können Sie DecayFactor und Amplitudenfaktor in gebrochene Zahlen umwandeln, in dem der Zähler als ganze Zahl gespeichert ist, und der Nenner eine ganzzahlige Potenz von 2 (so können Sie Bit-Verschiebung nach rechts, wie die Nenner, anstatt sich während der Filterschleife teilen zu müssen). Zum Beispiel, wenn DecayFactor 0.99, und Sie Ganzzahlen verwenden möchten, können Sie DecayFactor 0.99 65536 64881. Und dann immer wenn Sie multiplizieren mit DecayFactor in Ihrer Filterschleife, nur verschieben Sie das Ergebnis 16. Für weitere Informationen über dieses, ein ausgezeichnetes Buch thats Online, Kapitel 19 auf rekursive Filter: dspguidech19.htm PS Für das Moving Average-Paradigma, einen anderen Ansatz für die Einstellung DecayFactor und AmplitudeFactor, die möglicherweise mehr relevant für Ihre Bedürfnisse, können Sie sagen, dass Sie wollen, dass die vorherigen, etwa 6 Artikeln gemittelt, es diskret tun, fügen Sie 6 Elemente und teilen durch 6, so Können Sie den AmplitudeFactor auf 16 und DecayFactor auf (1.0 - AmplitudeFactor) einstellen. Antwortete May 14 12 at 22:55 Jeder andere hat kommentiert gründlich über den Nutzen der IIR vs FIR, und auf Power-of-two-Division. Id nur, um einige Implementierungsdetails zu geben. Das unten genannte funktioniert gut auf kleinen Mikrocontrollern ohne FPU. Es gibt keine Multiplikation, und wenn Sie N eine Potenz von zwei halten, ist die gesamte Division ein-Zyklus-Bit-Verschiebung. Basic FIR-Ringpuffer: Halten Sie einen laufenden Puffer der letzten N-Werte und einen laufenden SUM aller Werte im Puffer. Jedes Mal, wenn eine neue Probe kommt, subtrahieren Sie den ältesten Wert im Puffer von SUM, ersetzen Sie ihn durch das neue Sample, fügen Sie das neue SUM zu SUM hinzu und geben Sie SUMN aus. Modifizierter IIR-Ringpuffer: Halten Sie einen laufenden SUM der letzten N-Werte. Jedes Mal, wenn ein neues Sample in SUM - SUMN kommt, fügen Sie das neue Sample hinzu und geben SUMN aus. Antwort # 1 am: August 28, 2008, um 13:45 Uhr Wenn Sie 399m lesen Sie Recht, you39re beschreiben einen First-Order IIR-Filter der Wert you39re Subtraktion isn39t der älteste Wert, der herausfällt, sondern ist stattdessen der Durchschnitt der vorherigen Werte. Erstklassige IIR-Filter können sicherlich nützlich sein, aber I39m nicht sicher, was du meinst, wenn Sie vorschlagen, dass der Ausgang ist der gleiche für alle periodischen Signale. Bei einer Abtastrate von 10 kHz liefert das Einspeisen einer 100 Hz-Rechteckwelle in ein 20-stufiges Kastenfilter ein Signal, das für 20 Abtastungen gleichmäßig ansteigt, für 30 sitzt, für 20 Abtastungen gleichmäßig sinkt und für 30 sitzt. Ein erster Ordnung IIR-Filter. Ndash Supercat Aug 28 13 am 15:31 wird eine Welle, die scharf anfängt zu steigen und allmählich Niveaus in der Nähe (aber nicht auf) das Eingabe-Maximum, dann scharf beginnt zu fallen und allmählich in der Nähe (aber nicht auf) der Eingabe Minimum. Sehr unterschiedliches Verhalten. Ndash Supercat Ein Problem ist, dass ein einfacher gleitender Durchschnitt kann oder auch nicht nützlich sein. Mit einem IIR-Filter können Sie einen schönen Filter mit relativ wenigen Calcs erhalten. Die FIR Sie beschreiben kann Ihnen nur ein Rechteck in der Zeit - ein sinc in freq - und Sie können nicht die Seitenkeulen zu verwalten. Es kann lohnt sich, in ein paar ganzzahlige Multiplikatoren zu werfen, um es eine schöne symmetrische abstimmbare FIR, wenn Sie die Zeitschaltuhren ersparen können. Ndash ScottSeidman: Keine Notwendigkeit für Multiplikatoren, wenn man einfach jede Stufe der FIR entweder den Durchschnitt der Eingabe auf diese Stufe und ihre vorherigen gespeicherten Wert, und dann speichern Sie die Eingabe (wenn man hat Der numerische Bereich, man könnte die Summe anstatt den Durchschnitt verwenden). Ob das besser als ein Box-Filter ist, hängt von der Anwendung ab (die Sprungantwort eines Boxfilters mit einer Gesamtverzögerung von 1ms wird zum Beispiel eine nasty d2dt Spike haben, wenn die Eingangsänderung und wieder 1ms später, aber das Minimum haben wird Mögliche ddt für einen Filter mit insgesamt 1ms Verzögerung). Ndash supercat Wie mikeselectricstuff sagte, wenn Sie wirklich brauchen, um Ihren Speicherbedarf zu reduzieren, und Sie dont dagegen Ihre Impulsantwort ist eine exponentielle (anstelle eines rechteckigen Puls), würde ich für einen exponentiellen gleitenden durchschnittlichen Filter gehen . Ich nutze sie ausgiebig. Mit dieser Art von Filter, brauchen Sie nicht jeden Puffer. Sie brauchen nicht zu speichern N Vergangenheit Proben. Nur einer. So werden Ihre Speicheranforderungen um einen Faktor von N reduziert. Auch brauchen Sie keine Division für das. Nur Multiplikationen. Wenn Sie Zugriff auf Gleitpunktarithmetik haben, verwenden Sie Fließkomma-Multiplikationen. Andernfalls können ganzzahlige Multiplikationen und Verschiebungen nach rechts erfolgen. Allerdings sind wir im Jahr 2012, und ich würde Ihnen empfehlen, Compiler (und MCUs), mit denen Sie mit Gleitkommazahlen arbeiten können. Abgesehen davon, dass mehr Speicher effizienter und schneller (Sie dont haben, um Elemente in jedem kreisförmigen Puffer zu aktualisieren), würde ich sagen, es ist auch natürlich. Weil eine exponentielle Impulsantwort besser auf die Art und Weise reagiert, wie sich die Natur verhält, in den meisten Fällen. Ein Problem mit dem IIR-Filter fast berührt von Olin und Supercat, aber anscheinend von anderen ignoriert ist, dass die Rundung nach unten führt einige Ungenauigkeiten (und möglicherweise Biastruncation). Unter der Annahme, dass N eine Potenz von zwei ist und nur ganzzahlige Arithmetik verwendet wird, beseitigt das Shift-Recht systematisch die LSBs des neuen Samples. Das bedeutet, dass, wie lange die Serie jemals sein könnte, wird der Durchschnitt nie berücksichtigen. Nehmen wir z. B. eine langsam abnehmende Reihe (8,8,8,8,7,7,7,7,6,6) an und nehmen an, daß der Durchschnitt tatsächlich 8 ist. Die Faust 7 Probe bringt den Durchschnitt auf 7, unabhängig von der Filterstärke. Nur für eine Probe. Gleiche Geschichte für 6, usw. Jetzt denke an das Gegenteil. Die serie geht auf. Der Durchschnitt bleibt auf 7 für immer, bis die Probe groß genug ist, um es zu ändern. Natürlich können Sie für die Bias korrigieren, indem Sie 12N2, aber das nicht wirklich lösen, die Präzision Problem. In diesem Fall bleibt die abnehmende Reihe für immer bei 8, bis die Probe 8-12 (N2) ist. Für N4 zum Beispiel, wird jede Probe über Null halten den Durchschnitt unverändert. Ich glaube, eine Lösung für das implizieren würde, um einen Akkumulator der verlorenen LSBs halten. Aber ich habe es nicht weit genug, um Code bereit, und Im nicht sicher, es würde nicht schaden, die IIR Macht in einigen anderen Fällen der Serie (zum Beispiel, ob 7,9,7,9 würde durchschnittlich 8 dann). Olin, Ihre zweistufige Kaskade würde auch eine Erklärung brauchen. Halten Sie zwei durchschnittliche Werte mit dem Ergebnis der ersten in die zweite in jeder Iteration eingezogen halten. Was ist der Nutzen davon Diese Funktionalität ist experimentell und kann in einer zukünftigen Version geändert oder entfernt werden. Elastic wird ein Best-Effort-Ansatz, um alle Probleme zu beheben, aber experimentelle Features sind nicht abhängig von der Unterstützung SLA offizielle GA-Funktionen. Bei einer geordneten Datenreihe gleitet die Aggregation Moving Average ein Fenster über die Daten und gibt den Mittelwert dieses Fensters ab. Zum Beispiel können wir bei den Daten 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 einen einfachen gleitenden Durchschnitt mit einer Fenstergröße von 5 wie folgt berechnen: Bewegungsdurchschnitte sind eine einfache Methode, um sequentiell zu glätten Daten. Bewegungsdurchschnitte werden typischerweise auf zeitbasierte Daten, wie beispielsweise Aktienkurse oder Server-Metriken, angewendet. Die Glättung kann verwendet werden, um hochfrequente Fluktuationen oder zufälliges Rauschen zu eliminieren, was es ermöglicht, die Trends niedrigerer Frequenz leichter sichtbar zu machen, wie z. B. Saisonalität. Syntaxedit Linearedit Das lineare Modell weist den Punkten in der Reihe eine lineare Gewichtung zu, so dass ältere Datenpunkte (z. B. diejenigen am Anfang des Fensters) einen linear geringeren Betrag zum Gesamtdurchschnitt beitragen. Die lineare Gewichtung hilft, die Verzögerung hinter den Daten zu verringern, da ältere Punkte weniger Einfluss haben. Ein lineares Modell hat keine speziellen Einstellungen zu konfigurieren Wie das einfache Modell, Fenstergröße kann das Verhalten des gleitenden Durchschnitt ändern. Beispielsweise wird ein kleines Fenster (Fenster: 10) die Daten genau verfolgen und nur kleine Schwankungen verkleinern: Abbildung 3. Linearer gleitender Durchschnitt mit Fenster der Größe 10 Im Gegensatz dazu ist ein linear bewegender Durchschnitt mit größerem Fenster (Fenster 100) Wird alle Hochfrequenz-Schwankungen glätten, so dass nur niederfrequente, langfristige Trends. Es neigt auch dazu, sich hinter den tatsächlichen Daten um einen beträchtlichen Betrag zu verkürzen, obwohl typischerweise weniger als das einfache Modell: Abbildung 4. Linearer gleitender Durchschnitt mit Fenster der Größe 100 Multiplikativ Holt-Wintersedit Multiplicative wird durch die Einstellung type angegeben: mult. Diese Sorte wird bevorzugt, wenn der saisonale Einfluss mit Ihren Daten multipliziert wird. Z. B. Wenn die saisonale Affekt ist x5 die Daten, anstatt einfach zu ergänzen. Die Standardwerte für alpha und gamma sind 0,3, während beta 0,1 ist. Die Einstellungen akzeptieren alle Float von 0-1 inklusive. Der Standardwert für die Periode ist 1. Das multiplikative Holt-Winters-Modell kann durch multiplikative Holt-Winters-Arbeiten minimiert werden, indem jeder Datenpunkt durch den saisonalen Wert geteilt wird. Dies ist problematisch, wenn irgendeine Ihrer Daten Null ist, oder wenn es Lücken in den Daten gibt (da dies zu einer Division durch Null führt). Um dies zu bekämpfen, pads die Mult Holt-Winters alle Werte um eine sehr kleine Menge (110 -10), so dass alle Werte ungleich Null sind. Dies beeinflusst das Ergebnis, aber nur minimal. Wenn Ihre Daten ungleich Null sind oder Sie es vorziehen, NaN zu sehen, wenn Nullen auftreten, können Sie dieses Verhalten mit pad deaktivieren: false Predictionedit Alle gleitenden Durchschnittsmodelle unterstützen einen Vorhersagemodus, der versucht, in die Zukunft zu extrapolieren angesichts der aktuellen Geglättet, gleitender Durchschnitt. Je nach Modell und Parameter können diese Vorhersagen zutreffend sein oder auch nicht. Vorhersagen werden durch Hinzufügen eines Vorhersageparameters zu einer gleitenden durchschnittlichen Aggregation aktiviert, wobei die Anzahl der Vorhersagen angegeben wird, die an das Ende der Reihe angehängt werden sollen. Diese Prognosen werden im gleichen Intervall wie Ihre Eimer beabstandet: Die einfache. Lineare und ewma-Modelle produzieren flache Vorhersagen: Sie konvergieren im Wesentlichen auf dem Mittelwert des letzten Wertes der Serie und erzeugen eine Ebene: Abbildung 11. Einfacher gleitender Durchschnitt mit Fenster der Größe 10, prognostizieren 50 Im Gegensatz dazu kann das Holt-Modell basiert basieren Auf lokale oder globale konstante Trends. Wenn wir einen hohen Beta-Wert setzen, können wir basierend auf lokalen Konstanten Trends (in diesem Fall die Prognosen Kopf nach unten, da die Daten am Ende der Serie wurde in Richtung nach unten Richtung) zu extrapolieren: Abbildung 12. Holt-Linear gleitenden Durchschnitt Mit Fenster der Größe 100, vorherzusagen 20, alpha 0.5, beta 0.8 Im Gegensatz dazu, wenn wir eine kleine Beta wählen. Die Prognosen basieren auf dem globalen konstanten Trend. In dieser Reihe ist die globale Tendenz leicht positiv, so dass die Vorhersage einen scharfen U-Turn und beginnt eine positive Steigung: Abbildung 13: Double Exponential gleitenden Durchschnitt mit Fenster der Größe 100, vorherzusagen 20, alpha 0,5, beta 0,1 Das Holtwinders Modell Hat das Potenzial, die besten Prognosen zu liefern, da es auch saisonale Schwankungen in das Modell einbezieht: Abbildung 14. Holt-Winters gleitender Durchschnitt mit Fenster der Größe 120, vorherzusagen 25, alpha 0,8, beta 0,2, gamma 0,7, Zeitraum 30Home gtgt Inventory Accounting Topics Moving Average Inventory-Methode Gleitender Durchschnitt Inventory Method Overview Unter der gleitenden Average Inventory-Methode werden die durchschnittlichen Kosten für jedes Inventar Item auf Lager nach jedem Inventar-Kauf neu berechnet. Dieses Verfahren tendiert dazu, Inventarwerte und die Kosten der verkauften Waren zu erbringen, die zwischen denjenigen liegen, die unter der ersten In-First-Out-Methode (FIFO-Methode) und der LIFO-Methode (LIFO-Methode) abgewickelt werden. Dieser Mittelungsansatz wird als ein sicherer und konservativer Ansatz für die Berichterstattung der finanziellen Ergebnisse betrachtet. Die Berechnung ist die Gesamtkosten der gekauften Artikel geteilt durch die Anzahl der Artikel auf Lager. Die Kosten für die Beendigung des Inventars und die Kosten der verkauften Waren sind dann auf diese Durchschnittskosten festgelegt. Es werden keine Kostenschichten benötigt, wie es für die FIFO - und LIFO-Methoden erforderlich ist. Da sich die gleitenden Durchschnittskosten bei jedem Neukauf ändern, kann die Methode nur mit einem Perpetual-Inventory-Tracking-System verwendet werden, so dass ein solches System die aktuellen Bestände der Bestände aufrechterhält. Sie können die gleitende durchschnittliche Bestandsmethode nicht verwenden, wenn Sie nur ein periodisches Inventarsystem verwenden. Da ein solches System nur am Ende jedes Abrechnungszeitraums Informationen sammelt und keine Aufzeichnungen auf der Ebene der einzelnen Einheiten verwaltet. Auch wenn Inventarbewertungen mit Hilfe eines Computersystems abgeleitet werden, ist es durch den Computer relativ einfach, Bestandsbewertungen mit dieser Methode kontinuierlich anzupassen. Umgekehrt kann es sehr schwierig sein, die gleitende Durchschnittsmethode zu verwenden, wenn Inventurdatensätze manuell beibehalten werden, da das klerikale Personal durch das Volumen der erforderlichen Berechnungen überwältigt würde. Moving Average Inventory Methode Beispiel Beispiel 1. ABC International hat 1.000 grüne Widgets auf Lager am Anfang des April, zu einem Preis pro Einheit von 5. Damit ist die Anfangsbestände-Balance der grünen Widgets im April 5.000. ABC kauft dann 250 zusätzliche greeen Widgets am 10. April für 6 jeder (insgesamt Kauf von 1.500), und weitere 750 grüne Widgets am 20. April für 7 jeweils (insgesamt Kauf von 5.250). In Abwesenheit von Verkäufen bedeutet dies, dass die gleitenden Durchschnittskosten pro Einheit Ende April 5,88 betragen würden, was als Gesamtkosten von 11.750 (5.000 beginnend 1.500 Anschaffungen 5.250 Anschaffungen) berechnet wird, Hand-Einheit zählen 2.000 grüne Widgets (1.000 Anfang Gleichgewicht 250 Einheiten gekauft 750 Einheiten gekauft). Somit waren die gleitenden Durchschnittskosten der grünen Widgets 5 pro Einheit zu Beginn des Monats und 5,88 am Ende des Monats. Wir werden das Beispiel wiederholen, aber jetzt mehrere Verkäufe. Denken Sie daran, dass wir den gleitenden Durchschnitt nach jeder Transaktion neu berechnen. Beispiel 2. ABC International hat ab Anfang April 1.000 grüne Widgets auf Lager, zu einem Preis von 5 Stück. Sie verkauft am 5. April 250 dieser Einheiten und erhebt eine Gebühr für die Kosten der verkauften Waren von 1.250 Wird als 250 Einheiten x 5 pro Einheit berechnet. Dies bedeutet, dass es jetzt 750 Einheiten auf Lager, zu einem Kosten pro Einheit von 5 und einem Gesamtbetrag von 3.750 Einheiten. ABC kauft dann 250 zusätzliche grüne Widgets am 10. April für jeweils 6 (insgesamt Kauf von 1.500). Die gleitenden Durchschnittskosten liegen nun bei 5,25, was als Gesamtkosten von 5.250 geteilt durch die noch vorhandenen 1.000 Einheiten berechnet wird. ABC verkauft dann 200 Einheiten am 12. April und zeichnet eine Gebühr auf die Kosten der verkauften Waren von 1.050, die als 200 Einheiten x 5,25 pro Einheit berechnet wird. Dies bedeutet, dass es jetzt 800 Einheiten auf Lager, zu einem Kosten pro Einheit von 5,25 und einer Gesamtkosten von 4.200. Schließlich kauft ABC weitere 750 grüne Widgets am 20. April für je 7 (insgesamt Kauf von 5.250). Am Ende des Monats betragen die gleitenden Durchschnittskosten pro Einheit 6,10, die als Gesamtkosten von 4 200 5 250 berechnet werden, geteilt durch die insgesamt verbleibenden Einheiten von 800 750. Im zweiten Beispiel beginnt ABC International den Monat mit einer 5.000 Beginnend Balance der grünen Widgets zu einem Preis von 5 jeder verkauft 250 Einheiten zu einem Preis von 5 am 5. April, revidiert seine Stückkosten auf 5,25 nach einem Kauf am 10. April verkauft 200 Einheiten zu einem Preis von 5,25 am 12. April und Schließlich korrigiert seine Einheit Kosten auf 6,10 nach einem Kauf am 20. April. Sie können sehen, dass die Kosten pro Einheit ändert sich nach einem Inventar Kauf, aber nicht nach einem Inventar Verkauf.

No comments:

Post a Comment